CSE 141L Final Report

Junhua (Michael) Ma, A16299193; Juhak Lee, A16056117

Team

Junhua (Michael) Ma
Juhak Lee

Michael Ma

Introduction

The architecture is named MIHAK. It aims to achieve this by having a larger set of operations (4 bits for opcode) to make
writing assembly code more straightforward and efficient. Additionally, MIHAK includes more registers to simplify assembly coding
further and reduce the total number of instructions needed. This architecture can be classified as an "Accumulator" type of machine,

which means it performs computations by using a single accumulator register.

Architectural Overview

Caontrol
acc_br I . -.\\..__ __..'J:
absj 5
ins[8:4] reg_wr
£
i d_addr—m| alu_cmd
i Instruction | INS{8 Register alu_zero
PC » ! L
Memary File data_out—4
+ . I—wr addr
ins[3:0])
data_in—| ALU
'inB
reg_src —fi’“ |
=B » Zero Ext mem_wr
i i . mamm_re:
A A ins[3:0] . k4 g
addr | :
> Data »
PC_LUT |« - ; Memory
ins[3:0] dataLin-—» Fdata_out—®—°
t
CI:.I aclc wr eq
- — set I
ins[7:0] Accumulator alu_zero
—reset
T [':
acc_br lalu_zero

Machine Specification

Instruction formats

TYPE FORMAT CORRESPONDING INSTRUCTIONS
R 1 bit type, 4 bits opcode, 4 bits operand AND, ADD, PUT, etc
register
A 1 bit type, 1 bit funct, 7 bits address SETI
| 1 bit type, 4 bits opcode, 4 bits immediate | ADDI, SUBI, etc
Operations
NAME | TYPE | BIT BREAKDOWN EXAMPLE NOTES
SETI A 1 bit type (1), 8 bits SETI 0001 0001 SETI X =Acc <=X
immediate X is signed: -128 to 127
after SETI instruction, accumulator
now holds 0b0001 0001
PUT R 1 bit type (0), 4 bits opcode | # Assume accumulator has PUT R1 =R1 <= Acc
(0000), 4 bits operand 0b0001 0001
PUT R1
after PUT instruction, R1 now holds
0b0001 0001

EQ 1 bit type (0), 4 bits opcode | EQ R1 For R1 =1, EQ R1 flips
(0010), 4 bits operand # if Acc = R1, then Acc = 1;
otherwise, Acc =0
GET 1 bit type (0), 4 bits opcode | # Assume R1 has 0b0001 0001 GET R1 = Acc <= R1
(0011), 4 bits operand
GET R1
after GET instruction, accumulator
now holds 0b0001 0001
ADDI 1 bit type (0), 4 bits opcode | # Assume accumulator has 0 ADDI imm = Acc <= Acc + imm
(0100), 4 bits imm Imm unsigned: Range: 0 to 15
ADDI 2
after ADDI instruction, accumulator
now holds 2
LOAD 1 bit type (0), 4 bits opcode | # Assume R1 =0 and mem[0] = 1 LOAD R1 = Acc <= mem[R1]
(0101), 4 bits operand
LOAD R1
after LOAD instruction, accumulator
now holds 1
LOAD 1 bit type (0), 4 bits opcode | # Assume Acc = 0 and mem][0] = 1 LOADA R1 = R1 <= mem[Acc]
A (0110), 4 bits operand
LOADA R1
after LOAD instruction, R1 now
holds 1
SUBI 1 bit type (0), 4 bits opcode | # Assume Acc =5 SUBI imm = Acc <= Acc - imm

(0111), 4 bits imm

SUBI 1

Imm unsigned: range 0 - 15

after SUBI instruction, accumulator
now holds 4

ADD 1 bit type (0), 4 bits opcode | # Assume R1 =1 and Acc =1 ADD R1 = Acc <= Acc + R1
(1000), 4 bits operand
ADD R1
after ADD instruction, accumulator
now holds 2
RS 1 bit type (0), 4 bits opcode | # Assume R1 =2 and Acc = RS R1 = Acc <= Acc >> R1
(1001), 4 bits operand 0pb0001 0001 Sign-extended shift
RS R1
after RS instruction, accumulator
now holds 0b0000 0100
AND 1 bit type (0), 4 bits opcode | # Assume R1 =0b0001 1000 and AND R1 = Acc <= Acc & R1
(1010), 4 bits operand Acc = 0b0001 0001
AND R1
after RS instruction, accumulator
now holds 0b0001 0000
SAVE 1 bit type (0), 4 bits opcode | # Assume Acc =0, R1 =2, and SAVEA R1 = mem[Acc] = R1
A (1011), 4 bits operand mem[0] = 1
SAVEA R1
after SAVEA instruction, mem|[0]
now holds 2
LSI 1 bit type (0), 4 bits opcode | # Assume Acc = 0b0001 0001 LSI R1 = Acc <= Acc << imm

(1100), 4 bits imm

Imm unsigned: range 0 - 15

LSI 2

after RS instruction, accumulator
now holds 0b0100 0100

(1111), 4 bits imm

#if Acc = 0, go to label

XOR 1 bit type (0), 4 bits opcode | # Assume R1 =0b0001 0001 and XOR R1 = Acc <= Acc * R1
(1101), 4 bits operand Acc = 0b0000_0000
XORS RI1
after XORS instruction, R1 now
holds 000001 0001
OR 1 bit type (0), 4 bits opcode | # Assume R1 =0b0001 0001 and OR R1 =Acc <= Acc | R1
(1110), 4 bits operand Acc = 0b0000_0000
OR R1
after XORS instruction, R1 now
holds 00001 0001
BZ 1 bit type (0), 4 bits opcode | BZ label Assign label to 4-bit value from 0 to 15,

PC_LUT has mapping from label value to
the actual PC address to jump to

Internal Operands

The MIHAK architecture supports 17 registers, including 16 normal general purpose registers and 1 special accumulator register.

Control Flow (branches)

The MIHAK architecture supports two forms of branch instructions, one form only allows branch to jump backward but offering
a larger jump distance, while the other form allows the branch to jump both forward and backward but offering less jump distance.
The maximum branch distance supported is 255 instructions. To accommodate large jumps, we used full 8-bit unsigned values to
maximize the relative jump distance. When computing the target address, the value is simply added to the PC with ALU to derive the
new PC value.

Addressing Modes

Our instruction supports input of full 7-bit memory address values, and our instruction can load from memory using the value
of accumulator as address. So we can directly access 2”7 bytes of memory using indirect access where we can compute the desired
memory address in the accumulator and then directly read or write to memory at the address specified. Example:

Assume Acc =0

ADD 3

SAVEA R3

mem[3] = R3

We can also support indirect addressing, where we save the 8-bit memory address to access in the accumulator or a register,
and then access memory at that address. This allows us to specify memory addresses up to 8 bits, which can cover all 256 memory
positions in data memory. Example of our memory accessing instruction is as follows:

Assume mem[200] = 1

SETI 200

LOADA R1

#R1=1

Programmer's Model [Lite]

4.1 How should a programmer think about how your machine operates? Provide a description of the general strategy a programmer
should use to write programs with your machine. For example, one could say that the programmer should prioritize loading in the
necessary values from memory into as many registers as possible, then perform calculations. Another approach could be loading
and writing to memory in between every calculation step. Word limit: 200 words.

For our accumulator architecture, the programmer should strive to utilize the registers as much as possible to improve the
efficiency. Because many of our instructions are acted on the accumulator using values of registers, and the accumulator, especially
in the case of a chain of operations, could continue on without disruption provided that the values are all within registers. If values in
a computation are yet to be stored in register or provided halfway through a computation, then providing that value would cause the
accumulator to lose its current value, and continuing the computation would require additional repetitive setups. So it's most optimal
to prepare the values in advance and maximize the utilization of registers so that the computation is most efficient. This is also due to
the limitations of bits in instructions that prevent the possibility of directly providing numbers to the accumulator, while registers hae
8-bits that allows easy access of larger values.

4.2 Can we copy the instructions/operation from MIPS or ARM ISA? If no, explain why not? How did you overcome this or how do
you deal with this in your current design? Word limit: 100 words.

We can’t copy MIPS or ARM because they are 32-bit architectures whereas we are limited to 9-bit instructions. To overcome
this, we have to cut down the number of supported operations which makes programming assembly more difficult. We also limit the
types of instructions to just 2 types. We also utilized the strengths of accumulator architecture to directly store and use 8-bit register
values and make 1-operand instructions possible.

4.3 Will your ALU be used for non-arithmetic instructions (e.g., MIPS or ARM-like memory address pointer calculations, PC relative
branch computations, etc.)? If so, how does that complicate your design?

Based on our ISA, there are no non-arithmetic instructions that utilize the ALU.

Individual Component Specification

Top Level

Module file name: top_level.sv

Functionality Description

It combines all the modules to form the final processor, starting with using a PC to locate instructions in the instruction memory, to
reading from a register file, running ALU, and writing to data memory. For our architecture, the accumulator module is used as a
special purpose register that's connected directly to ALU and register file.

Schematic

s

Program Counter

Module file name: PC.sv
Module testbench file name: PC_tb.sv

Functionality Description

This module keeps track of the address of instructions, so that the instructions in a program can be executed line by line. The
program counter increments by 1 at every clock cycle, and has the option to perform relative or absolute jump. The target input to PC
is used for either relative or absolute jump to determine the new PC after the jump. The PC can be reset to 0 with reset input.

Testbench Description

The testbench tests that the PC can increment at each clock cycle, and can also perform both relative and absolute jumps correctly.

Schematic
PC:pcl
- '
absjump_en
1Tho an Addl prog_ctr~[9..0]
0
AD.OT /:\ OUT[R.0]
10'h1 B[D..{ﬂ/ bt ’
reljump_en
prog_ctr~[19..10]
1Tho ciw AddD
- A[S.0] 7 /:\ OUT[E.0]
target[0.0] B[00
re=t] 1 Lol

reset

prog_ctr~[29..20]

prog_ctr[0]-reg[9..0]
(2]

LK o prog_ctr[9_0]

10'ho

Timing Diagram

20

N N T - T
clk ﬂqJ—lJ—lJ—IJ—lJ—IJ—[J—IJ—IJ—IJ—IJ—lJ—IJ—lJ—IJ—lJ—IJ—IJ—IJ—IJ—lJ—lJ—lJ—IJ—lJ—IJ—IJ—[J—IJ—lJ—IJ—lJ—U—IJ—IJ—IJ—IIIJ—IJ—IJ—U—U—III
reset 4|

reljump_en

absjump_en
pogeu(90] XXXP fL P B K K b falblc pafefot o2 f3fafisp N R B B b 6 U B P kb I 65166 7 J6s 6o Joa fob foc Jod Joe ot J7O |
target[9:0] XXX

Instruction Memory

Module file name: instr ROM.sv

Functionality Description

This module takes the PC value, which specifies the address of an instruction, and outputs the corresponding 9-bits instruction binary
based on the given machine code instructions in mach_code.txt (converted from assembly).

Schematic

instr ROM:irT

E‘ core A

ThOmERy

9'h0| DATAIN[8..0]

ThT Nt DATAOUT([8.0]
RADDRI[9..0]

WADDRI[9..0]
WE

mach_code[8..0]

prog_ctr[9.0]

10'h0
1'h0

SYNC_RAM

Control Decoder

Module file name: Control.sv

Functionality Description

This module is responsible for taking the opcode from each instruction and setting the control bits for other modules in the processor
and ensuring the correct datapath for each instruction in our ISA. The table that maps instruction opcode to the exact control bit
settings in our processor design is shown as follows:

Ins Branch | MemWrite | RegWrite | AccWrite | ALUSrc | MemtoReg | RegSrc | Accin | MemSrc | ALUop | Eqinstr

SETI 0 0 0 1 X X X 1 X X 0

PUT 0 0 1 0 X X 0 X X X 0

EQ 0 0 0 0 1 X X X X 110
GET 0 0 0 1 1 1 X. 0 X 111
ADDI 0 0 0 1 0 1 X 0 X 000
SUBI 110
LSl 001
LOAD |0 0 0 1 1 0 X 0 1 X

LOADA (0 0 1 0 X 0 1 X 0 X

ADD 0 0 0 1 1 1 X 0 X 000
RS 010
AND 100
OR 101
XOR 011
SAVEA | 0 1 0 0 1 X X X 0 X

BZ 1 0 0 0 X X X X X X

Schematic

Controlctll
us WideOrs ALUOp[1]~not
2
b 4
12
4
11
WideOr1 AccWrite~not
11
WideOr3
ALUSrC
14

WideOr4
MemtoReg
15 | Branch
WideOrs 5 [Memsrc
| |

11 | MemWrite

12
ALUOp[2]~not 5 _JRessre
ALUCR[2.0]
b <
\WideOr7 ALUOp[O}-not

(=@ o [=]48 [T T
[=] w

instr[4.0] IN[4.0] 0OUT[31.0]

5 WideOro
1 RegWrite
DecoderQ [s]
31
p=2)
o
=
=0

S |WideOr2

é} Accln

Register File

Module file name: reg_file.sv

Functionality Description

This module consists of 16 registers that can store and access values quickly. To read the value of a register, the rd_addr field
specifies the register to read from, and dat_out is the value of that register. To modify the value of a register, the wr_addr and dat_in
field specifies the register to modify and the new value it should take. The “wr_en” control bit must be true to modify register value
once per clock cycle to protect the values stored in registers.

Schematic
reg_file:rrf1
N
—| core
clk CLKO
T'hOJ) g1
dat_in[7..0] DATAIN[7.0]
Thlena1 DATAOUT[Z.0] ot-oud7-0l
rd_addr[4..0]
RADDRI[3..0]
wr_addr[4..0] WADDR[3..0]
wr_en WE
SYNC_RAM
L A

ALU (Arithmetic Logic Unit)

Module file name: alu.sv

Module testbench file name: ALU_tb.sv

Functionality Description

This module performs all the key arithmetic operations for the processor. It's fully combinational so it's always computing values. The
operation performed is based on the 3-bit “alu_cmd” opcode. With each operation, the ALU also sets flags based on the result. The
zero flag is set to true if the result is 0, the parity flag is set to true if the number of 1’s in the result is odd, and so on.

Testbench Description

The testbench tests that the ALU can correctly perform all the arithmetic operations needed for our ISA. Each operation is performed
sequentially and the result is shown as waveform and checked.

ALU Operations
Add, subtract, and, or, xor, left shift, right shift (sign extend), pass A

Schematic

ARRLLA

20! P

Timing Diagram

alu_cmd[2:0] ———
inA[7:0] 11001100
inB[7:0] 110011

pari
lg7:0] 1L oortooo fmoowo fuomn p 0 Bmomin hoeomoor fuoouo |
sc_i
sc_o
zero

Data Memory

Module file name: dat_mem.sv

Functionality Description

This module is the main data storage of the processor that is slower to access but can store more data than the register file. Data in
data memory can be read or modified. To read data, the “addr” field specifies the memory address to read, the resulting data at the
memory location will be at “dat_out” field. To modify data, the same “addr” field specifies the memory address to write to, and the
data is specified in “dat_in” field. The “clk” input ensures that only one read or write can happen per clock cycle.

Schematic

dat_mem:dm

= N
core
clk CLKO
ThO| o
dat_in[7..0] DATAIN[7..0]
TNTlENAT DATAOUTEZ.0] g ou7.0]
addr[7..0] RADDR[7..0]
WADDR[7..0]
wr_en WE
SYNC_RAM
X v
Lookup Tables

Module file name: PC_LUT.sv

Functionality Description

This module is a look up table that maps the current PC value to any address that we want to jump to. In the case that the current PC
is pointing to a branch instruction, the look up table will provide the next PC value based on the address of the label to jump to.

Schematic

PC_LUT:pl1
.
E Equal2
Idr[9..0
addr{9..0] = = AL1.0] ouT target[9..0]
=]
L: _— -[B[31.0] z
g A[31..0]
32'h0 B[31.0] ol -
-[target[2]~not

target
—iLE WideNor0 ! .
S ouT target[4]~not
32'h1 B[31.0] .

'||—\ |

Muxes (Multiplexers)

Module file name: mux.sv

Functionality Description
This module selects 1 of 2 values based on a selector input. This is used heavily to construct the datapath so that data can flow to

the correct modules.

Schematic

Mux:MemSrc_mux

N
S
dataO[7..0]
rslt[7..0]
data1[7..0] —j—
\, v

Accumulator

Module file name: Accumulator.sv

Functionality Description

This module is a special purpose register that is closely connected to the ALU, data memory, and the register file. The accumulator
holds exactly one 8-bit value. To change the value, the new value is provided in “data_in” field, and the “wr_en” control bit must be
set to true to change the accumulator value. The accumulator value can be accessed anytime through the “data_out” field. The
“reset” field can be set to true to change the accumulator value to 0, while the “set” field can be set to true to change the value to 1.

Schematic

clk

Accumulatoraccum

=

accumulator[7..0]

wr_en

data_in[7..0]

accumulator~[7..0]

accumulator~[15..8]

8'h0 1

accumulator~[23..16]

) data_out[7..0]

Program Implementation

Program 1 Pseudocode
/*

Hemming Encoding (needs to be converted to Assembly)
Input: mem[0:29] - 15 original messages
Output: mem[30:59] - 15 corresponding encoded messages
*/
for (int 1 = 0; 1 < 30; i += 2)
{
// Load message
char firstHalf = mem[i + 17];
char secondHalf = mem[i];

// Get bits

char b[1l7];

for (int 3 = 7; j >= 0; Jj--)

{
b[j + 8 + 1] = (firstHalf >> j) & 1;
b[j + 1] = (secondHalf >> j) & 1;

}

// Calculate parity bits

char p8 = b[1l1l] ~ b[10] ~ bI[%] ~ b[8] "~ b[7] ~ b[e6] *
char p4 = b[1l1l] ~ b[10] ~ bI[%] ~ b[8] "~ b[4] ”~ b[3] *
char p2 = b[11l] ~ b[10] ~ b[7] ~ b[e6] ~ b[4] ~ b[3] ~
char pl = b[11l] * b[9] ~ b[7] ~ b[5] ~ b[4] ~ b[2] * b
char p0O = b[11l] ~ b[10] ~ bI[%] ~ b[8] "~ b[7] ~ b[6] *

A

p4 ~ p2 © pl;

// Set parity bits
char result[] = {b[l11], b[10], bI[9], bI[8], bl[7], bl6], b[5], P8,
b[4], b[(3], bl2], p4, b[1l], p2, pl, pO};

// Write result to memory
char firstHalfEncoded = 0;
char secondHalfEncoded = 0;
for (int j = 7; 3 >= 0; j--)
{

firstHalfEncoded |= result[7 - J] << J;
secondHalfEncoded |= result[7 - j + 8] << j;
}
mem[i + 1 + 30] = firstHalfEncoded;
mem[i 4+ 30] = secondHalfEncoded;

Program 1 Assembly Code
I/l For loop

SETIO
PUT R1 IR1=i=0

SETI 30
PUT R5 /I R5 =30

main_loop:

LOAD R1
PUT R2 /I R2 = mem[i] = secondHalf

GET R1

ADDI 1
LOADA R3 /I R3 = mem[i + 1] = firstHalf

SETI 80
PUT R4 /I R4 = b = 80 (addr to mem)

/I Inner For loop

SETI 7
PUT R6 IIR6=j=7

SETI -1
PUT R7 IIR7 =-1

SETI 1
PUT R8 II'R8 =1

get_bit_loop:

GETRS3

RS R6

AND R8

PUT R9 /I R9 = (firstHalf >> j) & 1

GET R2

RS R6

AND R8

PUT R10 /I R10 = (secondHalf >> j) & 1

GET R4
ADD R6

ADDI 9 Ib+j+9
SAVEAR9 //mem[b +] + 8 + 1] = (firstHalf >> j) & 1;

SUBI 8 Ib+j+1
SAVEA R10 /[mem[b + j + 1] = (secondHalf >> j) & 1;

GET R6

SUBI 1 I j--

PUT R6

EQR7

BZ get_bit loop //j==-17

[/l Calculate parity

GET R4

ADDI 11

LOADA R10 // R10 = mem[b + 11]
SUBI 1

LOADA R11 // R11 = mem[b + 10]
SUBI 1

LOADA R12 // R12 = mem[b + 9]
SuUBI 1

LOADA R13 // R13 = mem[b + 8]
SUBI 1

LOADA R14 /I R14 = mem[b + 7]
SUBI 1

LOADA R15 / R15 = mem[b + 6]
SuUBI 1

LOADA R16 / R16 = mem[b + 5]

GET R10

XOR RM
PUT R8
XOR R12
XOR R13
PUT R7
XOR R14
XOR R15
XOR R16
PUT R6

GET R4
ADDI 4
LOADA R9
SUBI 1
LOADA R10
SUBI 1
LOADA R11

GET R7
XOR R9
XOR R10
XOR R11
PUT R7

GET R4
ADDI 1
LOADA R13

GET R8
XOR R14
XOR R15
XOR R9

IIR8=p2=11710

IIR7=p4=11210"9"8

IIR6=p8=11210"9"82726"5

/I R9 = mem[b + 4]

/I R10 = mem[b + 3]

// R11 = mem[b + 2]

IIR7T=p4=1121029"r87r4 2312

/I R13 = mem(b + 1]

XOR R10
XOR R13
PUT R8 IIR8=p2=11210"7"6"4"3 "

GET R4
ADDI 11
LOADAR10 //R10 = p1=mem[b + 11]

GET R10
XOR R12
XOR R14
XOR R16
XOR R9
XOR R11
XOR R13
PUT R10 IR10=p1=11AQAT7TAEA4A2N

GET R4
ADDI 3
LOADA R14 /I R14 = mem[b + 3]

GET R6

XOR R9

XOR R14

XOR R11

XOR R13

XOR R6

XOR R7

XOR R8

XOR R10

PUTR12 //R12=p0=p8Ar4A3A2A1Ap8ADPAAD2ADT

/[Put bits together as result

SETIO
PUT R15
PUT R16

GETR9
LSI'7
OR R16
PUT R16

GET R14
LSI 6
OR R16
PUT R16

GET R11
LSI5
OR R16
PUT R16

GET R13
LSI3
OR R16
PUT R16

GET R6
OR R15
PUT R15

GET R7
LSl 4

/I firstHalfEncoded = 0
// secondHalfEncoded = 0

/I R9 = mem[b + 4]

/] set b4

I R14 = mem[b + 3]

/] set b3

/I R11 = mem[b + 2]

/] set b2

// R13 = memi[b + 1]

I/l set b1
/l R6 = p8
/] set p8

IIR7 =p4

ORR16
PUT R16 Il set p4

GET R8 /I R8 = p2
LSI 2

OR R16

PUT R16 Il set p2

GET R10 // R10 = p1
LSI 1

OR R16

PUT R16 Il set p1

GET R12 //R12 =p0
ORR16
PUT R16 /l set p0

/I All values in registers are covered, need to access mem for remaining bits
GET R4

ADDI 11

LOADARG // R6 = mem[b + 11]
SUBI 1

LOADAR7 //R7 = memb + 10]
SUBI 1

LOADARS //R8=mem[b + 9]
SUBI 1

LOADARY //R9=mem[b + 8]
SUBI 1

LOADAR10 //R10 = memib + 7]
SUBI 1

LOADAR11 //R11 =memlb + 6]
SUBI 1

LOADA R12

GET R6
LSI7
ORR15
PUT R15

GET R7
LSI 6
OR R15
PUT R15

GET R8
LSI 5
OR R15
PUT R15

GET R9
LSI 4
OR R15
PUT R15

GET R10
LSI 3
OR R15
PUT R15

GET R11
LSI 2
OR R15
PUT R15

/I R12 = mem[b + 5]

/I R6 = b11

/] set b11

I R7 =b10

/l set b10

/I R8 = b9

/] set b9

/I R9 =Db8

/] set b8

I R10 = b7

/] set b7

I R11 = b6

/] set b6

GET R12 I R12 = b5
LSI 1

ORR15

PUT R15 Il set b5

/I Write result to memory

GET R1

ADD R5

SAVEAR16 // mem][i + 30] = secondHalfEncoded;
ADDI 1

SAVEAR15 /I mem][i + 1 + 30] = firstHalfEncoded;

GET R1

ADDI 2 Ii+=2

PUT R1

EQRS5

BZ main_loop //i==307

Program 2 Pseudocode
/*

Hemming Decoding (needs to be converted to Assembly)

Input: mem[30:59] - 15 encoded messages with no error, or 1 or 2 bit errors

Output: mem[0:29] - 15 corresponding original messages (decoded and corrected if necessary)
*/
for (int i = 30; 1 < 60; i += 2)
{

// Load message

char firstHalf = mem[i + 1];

char secondHalf = mem[i];

// Get bits
char b[17]1;

for (int j = 7; 3 >= 0; j--)
{
b[j + 8 + 1] = (firstHalf
b[j + 1] = (secondHalf >>
}
// Compare parity bits
char p8 e = b[l6] ~ b[15] *
char p4 e = b[l6] ~ b[15] *
char p2 e = b[l6] ~ b[1l5] ~
char pl e = b[l6] ~ b[1l4] ~
char p0 e = b[l6] ~ b[15] *
~ b[5] ~ b[4] ~ Db[3] ~ b[2]
printf ("p8 e: %d\n", p8 e);
printf ("p4 e: %d\n", p4 e);
printf ("p2 e: %d\n", p2 e);
printf ("pl e: %d\n", pl e);
printf ("p0 e: %d\n", pO0_e);

>> 9) &
J) & 1;
b[14] *©
b[14] *©
b[1l2] ~»
b[12] *»
b[14] *©

~ bIlll;

// Analyze parity bits for error

char result[17] = {0};

if

{
// l-bit error
result[l6] = 0;
result[15] = 1;

(p0_e)

// Correction
int error index = p8 e * 8 + pd e * 4 + p2 e * 2 + pl e;
error_ index += 1;
b[error index] = !blerror index];
}
else
{
// No error or 2-bit error
if (p8_e || pd_e || p2_ e || pl_e)
{
// 2-bit error

result[le6e] = 1;
result[15] = 1;
}
else

{
// No error
result[l6] =
result[15] =

// Store decoded message
result[11] b[l6];
result[10]

I
o
—
o

[
result]|
result|
result|

[
[
[
[

result[2] = b[6];
result[l] = b[4d];

// Write result to memory
char firstHalfEncoded = 0;
char secondHalfEncoded = 0;
for (int j = 7; j >= 0; j--)
{

firstHalfEncoded |= result[j + 8 + 1] << j;
secondHalfEncoded |= result[j + 1] << 7J;

}

mem[i - 30 + 1] = firstHalfEncoded;

mem[i - 30] = secondHalfEncoded;

Program 2 Assembly Code
I/l For loop

SETI 30
PUTRT //R1=i=30

SETI 60
PUT R5 /I R5 =60

main_loop:

LOAD R1
PUT R2 /I R2 = mem[i] = secondHalf

GET R1
ADDI 1

LOADA R3 /I R3 = meml[i + 1] = firstHalf

SETI 80
PUT R4 /I R4 = b = 80 (addr to mem)

/I Inner For loop

SETI 7
PUT R6 IIR6=j=7

SETI -1
PUT R7 IIR7 =-1

SETI 1
PUT R8 II'R8 =1

get_bit_loop:

GET R3
RS R6

AND RS

PUT R9 /I RO = (firstHalf >> j) & 1

GET R2

RS R6

AND R8

PUT R10 / R10 = (secondHalf >> j) & 1

GET R4
ADD R6
ADDI 9 Ib+j+9

SAVEAR9 //mem[b +]+ 8 + 1] = (firstHalf >> j) & 1;

SUBI 8 Nb+j+1
SAVEA R10 /l mem[b + j + 1] = (secondHalf >> j) & 1;

GET R6

SUBI 1 I j--

PUT R6

EQR7

BZ get_bit loop //j==-17

/I Compare parity bits

GET R4
ADDI 8

ADDI 8

LOADAR9 //R9 = mem[b + 16]
SUBI 1

LOADAR10 //R10 = mem[b + 15]
SUBI 1

LOADAR11 /I R11 = memib + 14]
SUBI 1

LOADAR12 //R12=mem[b + 13]
SUBI 1

LOADAR13 //R13 = mem[b + 12]
SUBI 1

LOADAR14 //R14 = mem[b + 11]
SUBI 1

LOADAR15 //R15=mem[b + 10]
SUBI 1

LOADAR16 //R16 = mem[b + 9]

GET R9 IIR9 =p1=16

XOR R10

PUT R8 IIR8=p2=16"15

XOR R11

XOR R12

PUT R7 IIR7=p4=16"15"14"13
XOR R13

XOR R14

XOR R15

XOR R16

PUT R6 IIR6=p8=16"15"14"13*12*11 21079

GET R9
XOR R11
PUT R9 IIR9=p3=16"14

GET R4

ADDI 8

LOADAR10 //R10 = mem[b + 8]
SUBI 1

LOADAR11 /I R11 =memib + 7]
SUBI 1

LOADAR12 //R12 =mem[b + 6]
SUBI 1

LOADAR16 //R16 = mem[b + 5]

GET R16
XOR R10
XOR RM
XOR R12
PUT R16 IIR16=8"7"6"5

GET R7
XOR R16
PUT R7 IIR7T=p4=16"15"14*13"8* 776" 5

GET R8
XOR R13
XOR R14
XOR R10
XOR R11
PUT R8 IIR8=p2=16"15212 11287

GETR9
XOR R13
XOR R15
XOR R10
XOR R12
PUT R9 IR9=p1=16"147212210"8" 6

GET R4

ADDI 4

LOADAR11 /I R11 = memib + 4]
SUBI 1

LOADAR12 //R12=mem[b + 3]
SUBI 1

LOADAR13 //R13 =mem[b + 2]
SUBI 1

LOADAR14 //R14 = mem[b + 1]

GET R8
XOR R11
XOR R12
PUT R8 IIR8=p2=16"1521221128A7"4 "3

GETR9
XOR R
XOR R13
PUT R9 IIR9=p1=16"214212210"8"6"4 "2

GET R6
XOR R16
XOR R11
XOR R12
XOR R13
XOR R14
PUT R10 IIR10=p0=p8A8AT7TAGAEN4A3A2M

/I Analyze parity bits for error

SETI 1

PUT RM /I R11 =1

GET R10 /[Acc=p0_e

EQ R11 /l'if p0_e ==1, Acc = 1
BZ else

/I 1-bit error

SETI 1

PUT R14 /IR14 =F0 =1
SETIO

PUT R13 IIR13=F1=0

/I Correction

GET R6

LSI 3 /Acc=p8 e*8
PUT R6

GET R7
LSI 2
PUT R7

GET R8

LSI 1

ADD R9

ADD R7

ADD R6

PUT R9

ADDI 1

ADD R4

PUT R11 IR1M=b+p8 e*8+pd e*4+p2 e*2+pl e*1+1
LOADRM11 //Acc=memb+p8 e*8+pd e*4+p2 e*2+pl e*1+1]
EQR13 I/l if Acc == 0, Acc = 1

PUT R12 /I R12 = flipped bit

GET R11

SAVEAR12 /fmem[b+p8 e*8+pd e*4+p2 e*2+p1 _e*1+ 1] ="flipped bit

SETIO
BZ exit

else:

/I No error or 2-bit
GET R6

ORR7

OR R8

ORR9

EQ R11

BZ inner_else

/I 2-bit error
SETI 1
PUT R14
PUT R13
SETIO

BZ exit

inner_else:
/I no error
SETIO
PUT R14
PUT R13

exit:

GET R14
LSI 6
PUT R14

GET R13
LSI7

ADD R14
PUT R15

SETIO
PUT R16

GET R4
ADDI 8
ADDI 8
LOADA R6

IIR14 =F0 =1
IIR13=F1=1

IIR14=F0=0
IIR13=F1=0

// R6 = mem[b + 16]

SUBI 1
LOADA R7
SUBI 1
LOADA R8
SUBI 1
LOADA R9
SUBI 1
LOADA R10
SUBI 1
LOADA R11
SUBI 1
LOADA R12

GET R6
LSI 2
ORR15
PUT R15

GET R7
LSI 1
ORR15
PUT R15

GET R8
OR R15
PUT R15

GETR9
LSI'7
OR R16
PUT R16

/I R7 = mem[b + 15]
// R8 = mem[b + 14]
/I R9 = mem[b + 13]
// R10 = mem[b + 12]
/I R11 = mem[b + 11]

/I R12 = mem[b + 10]

GET R10
LSI 6
OR R16
PUT R16

GET R11
LSI 5
OR R16
PUT R16

GET R12
LSl 4
OR R16
PUT R16

GET R4
ADDI 8
LOADA R6
SUBI 1
LOADA R7
SUBI 1
LOADA R8
SUBI 2
LOADA R9

GET R6
LSI3
OR R16
PUT R16

GET R7
LSI 2

// R6 = meml[b + 8]
/I R7 =mem[b + 7]
// R8 = mem[b + 6]

/I R9 = mem[b + 4]

OR R16
PUT R16

GET R8
LSI1
OR R16
PUT R16

GETR9
OR R16
PUT R16

/I Write result to memory

GET R1

SUBI 15

SUBI 15

SAVEA R16 // mem(i - 30] = secondHalfEncoded;
ADDI 1

SAVEAR15 /[mem][i + 1 + 30] = firstHalfEncoded;

GET R1

ADDI 2 Ii+=2

PUT R1

EQRS5

BZ main_loop //i==607?

Program 3 Pseudocode
/*

Pattern Finding

(needs to be converted to Assembly)

Input: mem[0:31] - 32 byte strings
Output:
mem[32] - 5-bit pattern (first 5 bits of byte)
mem[33] - # bytes containing pattern
mem[34] - # times pattern appears within each byte
mem[35] - # times pattern appears across all bytes
*/
char pattern = mem[32]; // first 5 bits
char prevString = mem[0];
char numBytesWithPattern = 0;
char numPatternInBytes = 0;
char numPatternAcrossBytes = 0;
for (int i1 = 1; i <= 32; i++)
{
// Load message
char leftString = prevString;
char rightString = mem[i];

// Count occurances of pattern within each byte

char leftStringHasPattern = 0;
unsigned char patternMask = 0b11111000;
unsigned char patternSh = pattern;
for (int 7 = 0; j < 4; j++)
{
char left = leftString & patternMask;
if (left == patternSh)

{
leftStringHasPattern =

numPatternInBytes++;

1;

(leftString and rightString)

}
patternMask = patternMask >> 1;
patternSh = patternSh >> 1;

if (leftStringHasPattern)

{
numBytesWithPattern++;

// Count occurances of pattern across the two bytes
char patternMaskL = 0b00001111;
char patternMaskR = 0b10000000;

for (int j = 0; 3 < 4; j++)

{
char left = leftString & patternMaskL;
char right = rightString & patternMaskR;
char patternl = pattern >> (7 + 4);
patternl = patternl & patternMaskL;
char patternR = pattern << (4 - 3J);

if (left == patternl && right == patternR)
{

numPatternAcrossBytes++;

}
patternMaskL = patternMaskL >> 1;

patternMaskR = patternMaskR >> 1;
}

prevString = rightString;
}

// Update memory

mem[33] = numBytesWithPattern;
mem[34]
mem[35]

numPatternInBytes;
numPatternAcrossBytes + numPatternInBytes;

Program 3 Assembly Code

SETI 32
LOADA R13 /I R13 = mem[32]

ADDI 1

PUT R5 /I R5 =33

SETIO

LOADA R12 // R12 = mem[0] = prevString
PUT R14 I numBytesWithPattern = 0
PUT R15 /I numPatterninBytes = 0

PUT R16 /I numPatternAcrossBytes = 0
I/l For loop

SETI 1

PUT R1 IIR1=i=1

main_loop:

GET R12
PUT R3 /I R3 = leftString = prevString

GET R1
LOADAR2 //R2 = mem]i]

/I Count occurances of pattern within each byte

SETIO
PUT R6 /I R6 = leftStringHasPattern = 0

SETI O
PUT R10

GET R13
PUT R8 / R8 = patternSh = pattern

SETI -8 /I patternMask = 11111000

AND R3 Il Acc = left = leftString & patternMask
EQRS8

BZ exit /I left 1= patternSh go to else

SETI1

PUT R6 /I leftStringHasPattern = 1
GET R15

ADDI 1

PUT R15 / numPatterninBytes ++

exit:

SETI 1
PUT R9

GET R8
RS R9
PUT R8 /l patternSh = patternSh >> 1

SETI 124
PUT R7 /I R7 = patternMask = 01111100

AND R8
PUT R8

SETI 1
PUT R4 =1

SETI 4
PUT R

inner_for:

GET R7

AND R3 Il Acc = left = leftString & patternMask
EQR8

BZ inner_for_exit /I left = patternSh go to else

SETI 1
PUT R6
GET R15
ADDI 1
PUT R15

inner_for_exit:

GET R8
RS R9
PUT R8

GET R7
RS R9
PUT R7

GET R4

ADDI 1 Iy ++
PUT R4

EQ R11

BZ inner_for //j==47

GET R6
EQR9
BZ hasPatternExit // leftStringHasPattern == 0 then go to else

GET R14
ADDI 1
PUT R14 // numBytesWithPattern ++

hasPatternExit:

SETI 32
EQR1
BZ skip_break //i!=32 go to else

SETIO
BZ end_for

skip_break:
/I Count occurances of pattern across bytes

SETI 15
PUT R7 /I R7 = patternMaskL = 00001111

SETI -128
PUT R8 /I R8 = patternMaskR = 10000000

SETI 0
PUTR4 //R4=j=0

SETI 4
PUT R6

inner_for_across:

SETI 2
PUT R11

SETI O
PUT R10 Iz=0

GET R13
PUT R9

left_shift_for:
GET R9

LSI 1

PUT R9

GET R10

ADDI 1 IZ ++

PUT R10

EQ R6

BZ left_shift for //z==(4-]j)?

GET R2
AND R8 /I Acc = right = rightString & patternMaskR

EQR9
PUT R10 /I R10 = 1 if right == patternR, else 0

GET R4

ADDI 4

PUT R5 IIR5=j+4

GET R13

RS R5

AND R7

PUT R9 /[l R9 = patternL = pattern >> (j + 4) & patternMaskL

GET R3
AND R7 /I Acc = left = leftString & patternMaskL
EQ R9 /l Acc = 1 if left == patternL, else 0

ADD R10 /I Acc = 2 iff right == patternR && left == patternL
EQ R11
BZ exit_count //if right == pattern && left == pattern, go to else

GET R16
ADDI 1
PUT R16

exit_count:

SETI 1
PUT R9

GET R7
RS R9
PUT R7 /I patternMaskL >>= 1

GET R8
RS R9
PUT R8 I/l patternMaskR >>= 1

SETI 4
PUT R11 /I resetR11 =4

GET R6
SUBI 1
PUT R6

GET R4

ADDI 1 Ij++

PUT R4

EQ RM

BZ inner_for_across //j==47

GET R2
PUT R12 /I prevString = rightString

SETI 33
PUT R5 /l reset R5 = 33

end_for:

GET R1

ADDI 1 Ii++

PUT R1

EQR5

BZ main_loop //i==337

SETI 33

SAVEA R14 /I mem[33] = numBytesWithPattern
SETI 34

SAVEA R15 /I mem[34] = numPatterninBytes

GET R15
ADD R16
PUT R16 / numPatternAcrossBytes += numPatterninBytes

SETI 35
SAVEA R16 /I mem[35] = numPatternAcrossBytes

Changelog

e Final report

o Architecture Overview: Updated architecture diagram with PC_LUT changes

Individual Component Specification: Updated top_level schematic

Program Implementation: Updated all pseudocode and assembly code that fully works
e Milestone 3

o

o

o Assembly: updated assembly code based on changes to ISA in Milestone 2

e Milestone 2
o Architectural Overview: added control unit, LUT, and generally more details to the architecture diagram
o Machine formats:

m Added A-type instruction to more clearly distinguish between instruction formats, especially instructions dealing
with immediates

m Removed SET instruction because we didn’t use it in our assembly code and seems hard to implement

|

Removed BZU instructions because we no longer need it with the PC look up table

m Changed XORS to XOR instruction because it's easier to implement
e Milestone 1

o Initial version

