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Abstract

In our paper we propose different methods and findings for visual-learning on the
Microsoft COCO dataset using Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) to create a Encoder Decoder architecture. We also
compare our model with a popular alternative, the ResNet-50 model (Residual
Network 50) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
After trying many types of CNN-LSTM networks, with changes to CNN archi-
tecture, LSTM architecture, hyper parameters, and using pre-trained models, that
using a strong image classifier like Resnet or using a large LSTM network both
resulted in good image captioning performance. In task 1 we had our best network
be a Custom CNN-LSTM with an larger hidden layer, which achieved Bleu-1 and
Bleu-4 scores of 47.36 and 1.79 respectively on the holdout test set. For task 2,
we saw our resnet-LSTM network achieved Bleu-1 and Bleu-4 scores of 47.81
and 1.70 respectively on the holdout test set.

1 Introduction

The topic of learning-based vision provides new opportunities and challenges, especially within the
area of learning visual representations such as objection detection. What do we mean by objection
detection? To provide some intuition, when providing a person a photo, it’d be natural for them to



classify different objects within the image that they recognize. For instance, they may be provided a
picture of a birthday party and could identify common objects such as a cake, or people or birthday
presents. Or they could be provided an image of a table with different blocks of varying shapes and
based on prior knowledge throughout their life could classify their shapes using semantics solely
based on visual cues. This type of innate human ability to easily classify objects would present
massive benefits in varying fields such as robotics, quality control for medicine and agriculture,
security, video production and more. But how can we imbue computers with this same innate human
ability?

Through the usage of Convolutional Neural Networks and Long Short-Term Memory, we explore
the process of combining semantic language and visual learning in order to perform object detection
and captioning on a given image. We generated a CNN LSTM architecture where the CNN takes
an input of an image and abstracts the essential details of the image, through feature extraction.
These features are passed into an LSTM model to perform sequence prediction and output a caption
that describes objects in an image in relation to each other in English. We trained this model using
the MS COCO dataset and experimented with different layer sizes and parameters to see how we
could create a model that would generalize to the MS COCO dataset well. Finally, we tested using
a popular network, ResNet-50 to compare out results with another known option.

Through these steps we hope to provide more insight on the process of object detection and caption
generation using CNN LSTM models.

2 Background/Related Work

For training our model we used the extensive Common Objects in Context dataset (COCO). This
dataset is a large-scale object detection, segmentation and captioning dataset that has millions of
object instances, 80 object categories and 5 captions per image. To read more about the Microsoft
COCO dataset please see this paper describing the COCO dataset; Microsoft COCO: Common
Objects in Context

Similar papers that have used this this dataset inconjunction with their work include

* MDETR - Modulated Detection for End-to-End Multi-Modal Understanding. In this paper
by Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve and Ishan Misra
they propose MDETR, an end-to-end modulated detector that performs object detection
using a rawtext query, like a caption or a question. To pre-train their model they used
multiple datasets including the MS COCO dataset.

* [YOLOv4: Optimal Speed and Accuracy of Object Detection. In this paper by Alexey
Bochkovskiy, Chien-Yao Wang and Hong-Yuan Mark Liao, they propose a new CNN that
can perform accurate objection detection real-time on a conventional GPU and does not
require a large number of GPUs which other modern nerual networks require. They validate
the accuracy of the detector on the MS COCO (test-dev 2017) dataset.

In addition, the following lecture slides from Professor Gary Cottrell’s Deep Learning class at the
University of California, San Diego and supplemental materials were highly utilized for this project.

* Lecture Recurrent Nets Part 1 Page 52 - 55
* Lecture Generative Modeling with RNNs Page 9 - 15

* Lecture Introduction to Convolutional Networks Page 5 - 7

* Lecture Convolutional Networks, Part II Page 3 - 10

CS231n Convolutional Neural Networks for Visual Recognition

The following PyTorch libraries were important in implementing our model architectures. For more
information on how they function please view the following documentation pages

e PyTorch LSTM
* PyTorch BatchNorm2D
* PyTorch Embedding


https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/pdf/2104.12763.pdf
https://arxiv.org/pdf/2004.10934.pdf
https://cs231n.github.io/convolutional-networks/
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

* PyTorch Linear
* PyTorch CrossEntropyl.oss

3 Models

This section contains an overview of the CNN, LSTM and ResNet-50 architecture and decisions
behind why they’re structured like so.

3.1 CNN, LSTM and ResNet-50 Architecture Description

The CNN architecture from Task 1 takes an image as input with 3 channels and a scaled size of 256
by 256. The CNN consists of convolutional, pooling and fully connected layers at the end to get a
specified embedding size. These layers allows the network to abstract the features from the image
to get the core idea of the elements within it. We go into more detail of each layer in the CNN below
in this table:

CNN Architecture

Layer Input Output Stride | Kernel | Activation Padding

Channels Channels Size Size Function Size
Convolutional 1 3 64 4 11x11 BN +ReLU | 0
MaxPool 1 64 64 2 3x3 None 0
Convolutional 2 64 128 1 5x5 BN + ReLU | 2
MaxPool 2 128 128 2 3x3 None 0
Convolutional 3 128 256 1 3x3 BN +ReLU | 1
Convolutional 4 256 256 1 3x3 BN +ReLU | 1
Convolutional 5 256 128 1 3x3 BN +ReLU | 1
MaxPool 4 128 128 2 3x3 None 0
Adaptive AvgPool 128 1 1 1x1 None 0
Fully Connected 1 128 1024 1 N/A RelLLU N/A
Fully Connected 2 1024 1024 1 N/A ReLU N/A
Fully Connected 3 1024 300 (Em- | 1 N/A N/A N/A

beddedSize)

The CNN makes up the Encoder portion of the model, as it encodes the features of the image to
then be decoded by the LSTM architecture. The following decisions we made about the LSTM
architecture are listed in this table

LSTM Architecture
Layer Input Channels Output Channels Recurrence
Embedding 1 300 sentence length
LSTM 1 300 512 sentence-length + 1
LSTM 2 512 512 sentence-length + 1
Fully Connected 512 14663 sentence-length + 1

Note: sentence-length ranges from 1 to max-length 20

The LSTM is a variety of reccurent neural networks (RNNs) that solves the vanishing and exploding
gradient problem. But it still contains the essence of an RNN where it takes sequential data and uses
patterns to determine what the next likely output should be. In our case, this next likely output
should be a cohesive, human-readable sentence that describes the objects that were in the encoded
image. The output we expect from this model should predict a jstart; key word to indicate the start
of the sentence when the image is passed into the LSTM network, and should predict a sequence
of words that relate to the image passed into the LSTM encoder, and once completed this sentence
should end with the keyword jend;,. At the end there should be a human-readable sentence.

Another type of convolutional network used was the ResNet-50 architecture. As the name suggests,
ResNet-50 contains 50 layers with 48 convolutional layers, one MaxPool layer and one Average
Pool layer. Something novel about ResNet in general is that they tackle the vanishing gradient
problem where as a model backpropagates the gradient gets so small it vanishes”. Thus, to combat


https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

this they include additional skip connections which allows the network to skip layers during training
that aren’t relevant and allows the network to be deeper. Our architecture Using the resent50 model
removed the final layer, instead replacing it with a fully connected layer that had an output of
dimension 300. This decision was made to better fit the pre-trained model with our existing LSTM
architecture.
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Figure 1: Default Training/Validation Loss

3.2 Task 1 Architecture Changes

For our model we changed the embedding and hidden size to confirm the behaviour of our model.

We reduced the embedding size from the original 300 to 150, and expected a decrease in accuracy
from our model on our validation set because with a reduction in embedding size when we pass
this into the decoder there’s effectively less information for the LSTM to go off of, thus we expect
less accurate sentences to be produced. Our thoughts were correct as we achieved BLEU1 score of
40.837 and a BLEU4 score of 1.539 on the validation set.

To view the BLEU results please refer to our Results section. The reduced embedding size results are
labelled as "CNN-LSTM Embedding Size 150” and the increased Hidden Size results are labelled
as "CNN-LSTM Hidden Size 1024”.
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Figure 2: Embedding Size Reduction 150 Training/Validation Loss

For a second architecture change we increased the hidden layer size for the LSTM from the original
512 to 1024, and expected an increase in accuracy from our model because we have a larger network
and more memory from past sentences. We wanted to make this change because we were interested
if it would affect the performance but also if it would affect the training time, as there are now much
more nodes in the LSTM, but we saw minimal change in training time. Our thoughts were correct
as we achieved a BLEU1 score of 47.36 and a BLEU4 score of 1.79 on the validation set.
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Figure 3: LSTM Hidden Size Increase 1024 Training/Validation Loss

3.3 Task 2 Hyperparamter Changes

For this, we decided to change out the optimizer, and instead of using an Adam Optimizer, used
the Stochastic Gradient Decent (SGD) optimizer, and increased the learning rate by 100 times.
increasing from 5 x 1074 to 5 x 10~2 We decided to make these changes because we noticed
that the training slowed down between the first 1-2 epochs and beyond then, and wanted to look at
the differences between different optimizers. We saw an increase in BLEU-1 score performance, but
BLEU-4 performance dropped off, and we had much higher loss compared to the Adam optimizer.
As we can see in the loss graph where the minimum is aprox 2.2 compared to 1.6 of the default
configuration. This, along with the much worse captioning from the samples we viewed, led us to
not select this as our best model, despite it having the best BLEU-1 score. And we noticed that
BLEU4 tended to be a better metric of a good model for captioning.
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4 Results

As described in the previous section our models had different performances depending on
what hyperparameters and architecture changes were made. The following table collects the
results BLEU-1 and BLEU-4 scores for each of the models we ran from task 1 and 2.

BLEU Scores
Model BLEU-1 BLEU-4
CNN-LSTM Original 46.97 1.63
CNN-LSTM  Embedding || 40.837 1.539
Size 150
CNN-LSTM Hidden Size || 47.36 1.79
1024
Resnet-50 47.81 1.70
Resnet-50 new  Hyper- || 49.24 1.63
params




4.1 Training and Validation Loss Plots
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Figure 5: Custom CNN+ LSTM with 1024 hidden nodes Losses

For Task 1, We observed that it took a long time to train, and even though we trained for over two
hours, it only completed 10 epochs and would probably benefit from even more training. This is to
be expected though from the large amount of complexity in our network, there are a large amount
of weights and many layers that must be passed through and back propagated over to train. We also
noticed that pulling random images to generate captions for rarely worked well, and that certain
topics the network learned to caption well quickly (such as tennis and baseball), probably due to
them being more common in the training data.
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Figure 6: Resnet50 + LSTM Default Configuration Losses

For task 2 We observed that we were able to achieve a slightly lower loss compared to task 1, and
that the performance in terms of caption generation was noticably better after switching to Resnet50.
This improvement is expected, as we are starting with a more powerful, pre-trained convNet, which
means more time can be focused on training just the LSTM portion of the Encoder-decoder network,
This network generalized better to more objects / topics, but still struggled to always caption a
random image well, and tended to work better simple images compared to busy scenes.

4.2 Task 1 vs Task 2

Comparing the two networks, Task 2 using Resnet-50 was a better solution. It gave better captions
to more images, and had higher BLEU scores on the test set. We can attribute this to the 50 layers
of Resnet and think it was performing better because it was better able to pull out the features of an
image and was less sensitive to the backgrounds.

5 Captions

For these captions, we provide a Refrence Caption from the dataset as an example of what a ’correct”
answer would be. The temperature used for these refers to the Stochastic softmax done to add some
randomness into the sentences produced. From the captions we can see that using a medium, .4 in
this case, temperature performed well, a very high (5) temperature gave completely random words,
and a very small temperature (.001) performed identically to a deterministic softmax. Deterministic
simply means that we take the word that is most likely instead of randomly selecting one of the
usually few likely words.



5.1 BEST Task 1: CNN-LSTM with Hidden size = 1024

Figure 7:

Reference captions: a child with a laptop on a table.

Temp=.4: a man is looking at a laptop on a table.

Deterministic: a man is sitting on a bench with a laptop.

High temp (5): tucking aloft bore spiderman onthe phones righteous ceramics jointly investigate
down wendy director facilities gross motorcyles gingerbread jello yaks talbot

Low temp (.001): a man is sitting on a bench with a laptop.
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Figure 8:

Reference caption: a woman is holding a tennis racquet preparing to serve the ball.

Temp=.4: a woman holding a tennis racquet on a tennis court.

Deterministic: a man is standing in a field with a frisbee.

High temp (5): yong numbers loosing windshields truffles most vice odd missile measurements
ingredients fritos toy patients picket weight escorted collection skier stone-paved

Low temp (.001): a man is standing in a field with a frisbee.
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Figure 9:

Reference caption: a person riding a skate board on a skate park.

Temp=.4: a person riding a skateboard down a street.

Deterministic: a man is standing in front of a large building.

High temp (5): toa offers disembark player paradise powdered threes hurt summit moldings fluies
hardcover them eggbeater vase negatives visitor medals fog pastrami

Low temp (.001): a man is standing in front of a large building .
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5.2 Bad Captions Task 1: CNN-LSTM with Hidden size = 1024

Figure 10:

Reference caption: car driving down a road behind a lot of sheep.

Temp=.4: a man is standing in a field of food.

Deterministic: a man is standing in front of a large building.

High temp (5): blinded broadcast concentrates threes doll carrot glob room ramen cleaning english
livery doughnout motions graces peperoni checked dugout scopes snatching

Low temp (.001): a man is standing in front of a large building.
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Figure 11:

Reference caption: happy boy showing off a packaged electric toothbrush.

Temp=.4: a woman is holding a banana and a knife.

Deterministic: a man is sitting on a bench with a dog.

High temp (5): crucifix costume national needless neutral clementines he bell elevating shower
panned action valance goat deluxe cutters warranty instructions hots setting

Low temp (.001): a man is sitting on a bench with a dog.

14



Figure 12:

Reference caption: a man with a leather jacket sitting on a motorcycle in a street.

Temp=.4: a young boy standing on a skateboard on a bench.

Deterministic: a man is standing in front of a large building.

High temp (5): roosts whispy rained outs tattooed recliner grease guy recliner fog bowties lapse
conductor anchor stand-up drums coax tommy wharf statues

Low temp (.001): a man is standing in front of a large building.
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5.3 BEST Task 2: RESNET50-LSTM

Figure 13:

Reference captions: this is a photo of a large crowd of young adults sitting on a long row of park
benches

Temp=.4: a woman is sitting on a bench in a black and white photo

Deterministic: a person is standing on a skateboard in the rain

High temp (0.9): the school lady is holding up the water

Low temp (0.3): a man and a woman standing next to a fire hydrant
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Figure 14:

Reference captions:

Temp=.4: a person is holding a frisbee in the air

Deterministic: a woman is standing in front of a fire hydrant

High temp (0.9): woman holding a skateboard and a child on the concrete
Low temp (0.3): a woman is standing next to a fire hydrant
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Figure 15:

Reference captions:

Temp=.4: a man is standing next to a fire hydrant

Deterministic: a person is holding a frisbee in the air

High temp (0.9): a woman stands on a mug in front of a fire hydrant
Low temp (0.3): a woman is standing in front of a fire hydrant
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5.4 Bad Captions Task 2: RESNET50-LSTM

e .

Figure 16:

Reference captions:

Temp=.4: a person is sitting on a skateboard in a parking lot
Deterministic: a person is standing on a bench with a skateboard
High temp (0.9): a kid colored toy school a beagle on a wall
Low temp (0.3): a woman is holding a frisbee in the air
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Figure 17:

Reference captions:

Temp=.4: a woman is sitting on a bench while holding a cell phone
Deterministic: a woman is standing on a skateboard in the rain
High temp (0.9): a couple of fans on a skateboard looking at a toy
Low temp (0.3): a woman is standing by a fire hydrant

20



Figure 18:

Reference captions:

Temp=.4: a person in a suit is holding a skateboard

Deterministic: a person is standing on a skateboard in the rain

High temp (0.9): a woman holds a phone to the snowy swiss in the rain
Low temp (0.3): a man is sitting on a bench with a skateboard

6 Discussion

One aspect of our results was how on multiple instances of training, the network latched onto
certain common phrases that occurred often. All of the generated captions begin with the word ”a”
and often the subject of the generated caption is “a man”, ”a woman” or “a person” presumably
because these are common objects within images in the COCO dataset. Another insight we had into
these results were regarding the calculation of loss. Because the sentence is padded, the quickest
way to reduce loss is to correctly match the end and pad tags with each teacher-forced iteration.
This means that the sentence biases towards simpler and shorter sentences that use more common
subjects and actions. Early on in our network we notice that the network generates captions like ’a
ain aon a a” and similarly worded intellectual insights. This is probably due to the likelihood of
any singular word being ”a”, ”in” or “on” is very likely. Since these captions are generated early
on, this is probably before the LSTM learns the hidden weights between each time step well enough

to understand some form of grammar.

The Resnet50 Network was the best network for generating captions. This judgement is based off
of the average BLEU Scores generated for each network. In our experience, the Resnet50 network
performed better. This may be because it has already been pre-trained on a larger set of data. It
is also a deeper network than own convectional neural network, with 48 convolutional layers. The
added depth, allows it to generalize more abstract features from our image and thus may have

21



allowed the network to perform better.

The deterministic approach does not work well because it simply selects the option output from our
softmax layer that has the maximum likelihood of occurring. This means that the network is going
to choose the single most likely option based on some input features. Then, the captions will not
be unique due many of the input images sharing similar features. Then, many of the captions will
be exactly the same for a variety of images. Thus, that’s why when the temperature approaches
0, the captions generated would be very close to a deterministic generation as the distribution is
completely uniform. However, by having a higher temperature such as 0.4, we’d get a different
caption each time. Thus, the network won’t latch onto a single outcome that may be completely
wrong and the temperature combats this issue in the deterministic method. However, too high of
a temperature value injects too much randomness into the decision-making process and thus that’s
why we observed more randomness in the captions generated, which were not very human-readable.

7 Team contributions

7.1 Jason Stanley

On this PA T worked on implementing the CNN, connecting the CNN to the LSTM and calculating
the cross entropy loss for the LSTM outputs. As a group we all contributed to bug fixes along the
way and split up the work for training models and contributing to the write up. Another component
I helped with was implementing the pretrained resnet and freezing the past layers, which Elliot lead
and I helped with. Overall this group was great to work with and everyone contributed a lot. We
worked well together and through in person meetings and discord we were able to get work done in
a good amount of time.

7.2 Michael Ma

I worked on the LSTM class with initializing layers and the forward function. Throughout the as-
signment [ worked on testing and debugging the LSTM forward function, and implemented caption
generation with sampling. I also helped programming the training function and the generate caption
function. Finally, I wrote the README file for the Github repository.

7.3 Elliot Lee

I helped with the initial implementation of the LSTM encoder/decoder architecture, attempted bug
fixing with our training function, and helped with the implementation and testing of the resnet50-
Istm architecture changes. Additionally, I trained this model, generated different stochastic captions
and recorded statistics for this network. Also I helped write sections of the report.

7.4 Annabella Macaluso

For this PA I contributed towards building the CNN and debugging the implementation of the CNN-
LSTM. I went to office hours to debug our code and fixed bugs with computing the loss. Ultimately
we had to train longer and we were able to receive promising results. I trained models on how
architecture changes affected our model and assisted in the writing and formatting of this paper
submission.

References

[1] Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J. (2021) Dive into Deep Learning.

22



	Introduction
	Background/Related Work
	Models
	CNN, LSTM and ResNet-50 Architecture Description
	Task 1 Architecture Changes
	Task 2 Hyperparamter Changes

	Results
	Training and Validation Loss Plots
	Task 1 vs Task 2

	Captions
	BEST Task 1: CNN-LSTM with Hidden size = 1024
	Bad Captions Task 1: CNN-LSTM with Hidden size = 1024
	BEST Task 2: RESNET50-LSTM
	Bad Captions Task 2: RESNET50-LSTM

	Discussion
	Team contributions
	Jason Stanley
	Michael Ma
	Elliot Lee
	Annabella Macaluso


