
Project 4: Grasping
Junhua (Michael) Ma

junhua@berkeley.edu
Antony Zhao

ayzhao7761@berkeley.edu

Abstract—In this project, we developed and evaluated grasping
techniques for an Allegro multi-fingered hand mounted on a
Sawyer robotic arm, using the MuJoCo physics simulator. Our
approach combines an inverse kinematics (IK) solver to compute
joint configurations that achieve specified fingertip positions
and orientations, with a grasp synthesis algorithm designed to
generate force-closure grasps. The system demonstrates robust
and effective grasping performance in simulation across a variety
of object geometries. Additionally, we explored extensions such
as grasping objects of different shapes and executing placement
tasks into containers.

I. METHODS

A. Levenberg-Marquardt Inverse Kinematics

The goal of inverse kinematics is to determine joint con-
figurations q that achieve a desired end-effector position and
orientation. In this project, we use the well-known Levenberg-
Marquardt method used in practical robotics applications de-
scribed by equation

qt+1 = qt + ((JTJ + λI)−1JT (xd − xt) (1)

where qt is the joint state at time t, J is the manipulator
Jacobian, λ is the damping coefficient, xd is the desired
position, and xt is the current position. While the different
between qt and qd is above a certain threshold, we repeatedly
apply the equation to obtain updated joint state. We also clip
qt at each step to ensure that the joint limits are obeyed.

To adapt the Levenberg–Marquardt algorithm for multiple
fingers with desired positions and orientations, we compute
both the position and orientation error for each fingertip.
Correspondingly, we obtain the Jacobians for position and
orientation with respect to the joint configuration. By stacking
the individual position and orientation Jacobians into a single
combined Jacobian matrix, and similarly concatenating the
error vectors, we construct a unified system. This allows us to
apply the standard Levenberg–Marquardt update to solve for
the joint configuration q .

B. Grasp Synthesis

The grasp synthesis algorithm looks to obtain grasping joint
states for the Allegro hand that also ensures force closure,
which means the hand can resist arbitrary external wrenches
on the object to be a good grasp.

Initially, we use inverse kinematics to bring the palm slightly
above the ball facing downward towards the ball, which sets
the stage for synthesizing grasp. The grasp synthesis algorithm
overall aims to minimize a joint state objective function.
Before the fingers form contact with the ball, the joint state

objective function is simply the sum of squared distances
between the ball and each fingertip. After contacts are formed,
the joint state objective function first obtain the position and
normal vectors of contact between each finger and the ball.
Then a discrete friction cone is computed for each contact
normal, from which the graspability matrix G is computed.

Using G, we aim to achieve force closure by examining the
necessary and sufficient conditions for force closure. For nec-
essary condition, which examines if the origin of the wrench
space lies inside the convex hull of the contact wrenches, we
solve a simplified optimization problem formulated as

Q+(G) = min
α≥0

∥Gα∥2

We define the necessary condition to be satisfied if the result-
ing Q+ value is below a certain threshold. If the necessary
condition is satisfied, we check the sufficient condition, which
examines if the origin lies in a strict interior of the wrench
space modeled as a ball with radius r, with a optimization
problem formulated as

Q−(G) = max
k=1,...,K

(min−r)

subject to:

rqk =

N∑
i=1

αigi,

N∑
i=1

αi = 1, αi ≥ 0, r ≥ 0

For Q− < 0, the force closure should be guaranteed, while
Q− = 0 implies a marginal grasp that may or may not lead
to successful grasp.

C. Extensions

To further test and validate the synthesized grasps, we
examine two extensions.

The first extension is to grasp and place the ball into a
container. With a good grasp, this task should be trivial as the
ball should remain in hand during transit until the hand release
the grasp and drop the ball at the desired location.

The second extension grasp a cube instead of a ball. We
defined a cube with similar properties like mass and size
as the ball, and replaced the ball in simulation with the
cube. For simplicity, we used the same distance function to
compute the distance between each fingertip and the surface,
which is a very rough estimation, but from the simulation we
still obtained successful grasp. Additionally, we also obtained
success with placing the cube into a container.



II. EXPERIMENTAL RESULTS

A. Inverse Kinematics Solver

For a given position and orientation for each of the 4 fingers
as well as the palm, we can obtain joint state q with inverse
kinematics, with an example result shown in Fig. 1.

Fig. 1. Example joint state from IK solver given target finger and palm
positions and orientations.

To grasp the ball with inverse kinematics, we generated 4
grasp points for each finger along the equator of the ball that
are 50 degrees apart, and simply used the same downward
orientation as target orientation for each fingertip. The result
obtained is shown Fig. 2, which shows poor performance of
the IK solver to generate good grasp without good target
orientations. Generally, we tested a few target positions and
orientations, and got high error and tend to fail to converge
even over 10k steps.

Fig. 2. Result of grasping with IK solver given target positions along the
equator and downward orientation.

Additionally, we used the same inverse kinematics setup to
prepare for grasp synthesis by bringing the palm down above
the ball. We simply set desired palm position to be over the
ball position by a certain offset and desired palm orientation

TABLE I
GRASP SYNTHESIS HEIGHT COMPARISON

Starting Height Q+ Q− Success

0.12 N/A N/A No

0.13 7.2e-6 -0.006 Yes

0.14 7.6e-6 -0.007 Yes

0.16 9.27e-7 -0.001 Yes

0.18 N/A N/A No

to be downward, and result is shown in Fig. 3. In this case,
for a more simple and exact target configuration, the IK solver
is very effective.

Fig. 3. Result of using IK solver to lower the hand for grasp synthesis.

B. Grasp Synthesis
Overall, grasp synthesis algorithm generates good grasping

joint states that leads to successful grasps during simulation.
An example grasp generated through grasp synthesis is shown
in Fig. 4, which looks much better than the grasp from IK
solver. A typical loss curve obtained during grasp synthesis is
shown in Fig. 5, which gradually converges.

Additionally, we experimented with different starting
heights of the palm above the ball, and the results are summa-
rized in Table. 1. Generally, we found that successful grasp
synthesis is highly dependent on the starting configurations
of the hand. Of course, if the hand is too far away, the
fingers can never reach the ball. However, even small height
adjustments can lead to failures where the sufficient conditions
optimization solver may fail. In terms of the values of Q+ and
Q−, generally we are able to obtain Q+ values low enough to
meet the necessary condition, and more negative Q− leads to
better grasp, as Q− very close to 0 leads to grasps closer to
being marginal. From the simulation we confirmed that having
Q− < 0 leads to good grasps with the ball firmly in hand
without any sliding.

C. Extensions
We obtained similarly successful results for some extension

tasks, with transferring ball to a container shown in Fig. 6,



Fig. 4. Result of grasp synthesis. Top: front view of grasp. Middle: side
view of grasp. Bottom: front view of grasp lifting the ball.

Fig. 5. Typical loss curve obtained during grasp synthesis. Vertical axis is
loss, horizontal axis is iteration.

picking up a cube shown in Fig. 7, and transferring cube to a
container shown in Fig. 8. The grasp is generalizable to similar
shapes like cubes even without an accurate finger-to-surface
distance function. A potential real world use case of grasping
is demonstrated by grasping object and transferring them to a
designated location.

III. DISCUSSION

Overall, the IK solver and grasp synthesis complemented
each other well. The IK solver excels at producing larger
joint movements, enabling coordinated motion of both the arm
and hand, though this often comes at the cost of precision
and guaranteed force closure. In contrast, the grasp synthesis
method focuses on hand-specific joints and is more effective
for generating precise, force-closed grasps. The synergy is
especially handy for transferring object to container tasks,
where IK is utilized to direct the hand to the target position,
and force closure ensures the object doesn’t slip out of the
hand during movement. Moreover, the grasp synthesis is pretty
effective overall as it can also generalize to object of different
shapes, although its generality towards other object attributes
like mass, size, and so on can be explore further in future
works.

However, there are also a few aspects about this project that
are challenging or confusing. One aspect is the use of sufficient
condition to ensure force closure in synthesized grasp. From
our testing, even without the use of the sufficient condition and
simply exiting grasp synthesis upon contact, the resulting grasp
can still demonstrate all the tasks successfully. Therefore, we
are unable to see the effect of sufficient conditions very well.
The other aspect is the overall difficulty with implement-
ing sufficient condition, as the solver frequently results in
no solutions even with small changes to the starting palm
configuration. Since the sufficient condition function relies
on the graspability matrix, which requires the correct contact
positions, normals, and friction cones, it’s hard to debug since
any errors in previous parts could contribute to the error in



Fig. 6. Result of grasping and transferring ball to container.

sufficient condition function. Finally, we encountered some
difficulties with MuJoCo simulation and DM Control library,
such as not able to plot the contact force due to some strange
errors.

REFERENCES

[1] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Intro-
duction to Robotic Manipulation, 1st ed. CRC Press, 2017. doi:
10.1201/9781315136370.

IV. APPENDIX

https://github.com/antony-zhao/106b-lab
Demo Videos: https://drive.google.com/drive/folders/1vqGix–

TEsPHofs3wh4V6n2eigXh˙Z2v?usp=sharing

Fig. 7. Result of grasping a cube.

https://github.com/antony-zhao/106b-lab
https://drive.google.com/drive/folders/1vqGix--TEsPHofs3wh4V6n2eigXh_Z2v?usp=sharing
https://drive.google.com/drive/folders/1vqGix--TEsPHofs3wh4V6n2eigXh_Z2v?usp=sharing


Fig. 8. Result of grasping and transferring cube to a container.


	Methods
	Levenberg-Marquardt Inverse Kinematics
	Grasp Synthesis
	Extensions

	Experimental Results
	Inverse Kinematics Solver
	Grasp Synthesis
	Extensions

	Discussion
	References
	Appendix

