Intrinsic Motivation for Robotics Grasping

Antony Zhao
ayzhao7761 @berkeley.edu

Abstract—In this project, we explore whether intrinsic moti-
vation based on prediction error can enable a robot to learn
grasping without relying on explicit rewards. We trained a
Sawyer robot in simulation using PPO with and without Random
Network Distillation (RND), comparing performance in dense
and sparse reward settings. Although RND did not improve out-
comes in our simple grasping tasks, it demonstrated interesting
exploratory behaviors, which shows promise when used for more
complex robotics tasks. Additionally, we deployed our trained
RND agent to test in the real world to confirm its real-world
applicability.

I. INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful
framework for enabling agents to acquire complex behaviors
through interaction with their environment. However, in sce-
narios where external rewards are sparse or difficult to define,
agents often struggle with effective exploration, hindering
learning progress. To address this, intrinsic motivation mecha-
nisms where agents generate internal rewards based on factors
like prediction error have been proposed to encourage explo-
ration by quantifying novelty or surprise in the environment
[1). Methods such as Random Network Distillation (RND)
is a effective implementation of this approach for improved
learning performance [2].

Robotic grasping is a fundamental yet challenging prob-
lem in the field of robotics, involving complex processes
generally including object detection, pose estimation, motion
planning, control, all of which must be executed with high
precision to manipulate objects of varying properties. Despite
significant advancements, especially with rising popularity of
using RL-based methods to learn grasping, achieving human-
level dexterity and adaptability in robotic grasping remains a
challenging problem.

Our project explores the application of RL and intrinsic mo-
tivation, specifically with intrinsic rewards based on prediction
error following the RND implementation, to facilitate learning
in robotic grasping through human-like self-driven exploration
with limited or no explicitly defined extrinsic rewards. We
implemented and evaluated this approach in a simulated en-
vironment using the Robosuite framework [3] with a Sawyer
robot and deployed it to a real-world environment to test the
practicality of our methods. By comparing performance across
dense, sparse, and purely intrinsic reward settings, we assess
the effectiveness of intrinsic motivation and discuss findings
and potential future directions. Overall, our work contributes to
the broader goal of enabling more autonomous, generalizable,
and practical robot learning, with robotic grasping as a starting
point.

Junhua (Michael) Ma
junhua@berkeley.edu

Fig. 1. Simulation Environment.

II. RELATED WORK
A. Reinforcement Learning

Reinforcement learning (RL) has been widely applied to
robotic control tasks, including locomotion, navigation, and
manipulation. RL enables agents to learn policies directly
from interaction, which doesn’t require the extensive datasets
required by other machine learning methods like imitation
learning [4]], and commonly results in greater adaptability than
classical control methods. Most notably, RL training is in-
spired by the human learning process and can lead to learning
intelligent, human-like behaviors, which are very desirable in
robots. However, RL methods generally require simulations
as training environments and encounter challenges with real-
world deployment due to gaps between simulation and reality.
The performance of RL training also varies considerably based
on many possible hyperparameter configurations and requires
a well-defined reward function, which further limits its prac-
ticality to real-world robotic tasks. In the context of robotics
grasping, RL methods overall demonstrate successful results
even for more complicated tasks like grasping in cluttered
environments, where RL agents can learn to interact with the

environment to achieve successful grasp even in the presence
of obstacles [5]]. Further works explore more complex network
architectures to also optimize the efficiency of grasping and
environment interaction to eliminate unnecessary movements
[6]. However, prior works require complex workflow and
specially crafted metrics to generate well defined reward
functions, which limits the generalization and scalability of
the overall learning setup.

B. Intrinsic Motivation

Intrinsic motivation has been proposed to enhance RL learn-
ing, particularly in environments where external rewards are
sparse or difficult to design. Methods such as curiosity-driven
exploration and prediction error-based bonuses have demon-
strated strong performance in complex exploration tasks, espe-
cially in video game benchmarks with sparse rewards [1] [2].
In the field of robotics, intrinsic motivation has been applied
to improve learning in tasks involving locomotion, navigation,
and manipulation [[7], helping agents explore more effectively
without dense supervision. However, the application of intrin-
sic motivation remains relatively limited in scope, and to our
knowledge, no prior work has directly investigated its use for
robotic grasping tasks—a domain where reward design can be
especially challenging and sparse feedback is common.

III. METHODS
A. Proximal Policy Optimization (PPO)

We utilize PPO as our RL algorithm across all experiments.
It is widely used in robotics and is commonly used in ALE
environments, where much of the work for intrinsic motivation
is done. We use a fairly standard PPO algorithm using gen-
eralized advantage estimation A and policy gradient clipping,
as shown by the equation below.

L(S7 a, 07 aold) =
min(MA, clz’p(m, 1—¢,14+¢)A)
6014 (a‘s) 7r901d(a|5)

Actions are sampled from a normal distribution with a state-
independent log standard deviation, and the policy network
computes a mean for this distribution. These are then passed
into a tanh function before being passed into the environment
to normalize the actions into a reasonable range for robotic
control.

B. Random Network Distillation

Random Network Distillation (RND) utilizes the fact that
model error is high when there are few samples for the model
to train on. The original paper focuses on the Montezuma’s
Revenge environment from ALE, where changing rooms cre-
ate significant differences in the image observations and help
direct the agent where it would otherwise be difficult to explore
the environment.

This works by randomly initializing two feature models
ftargets fpredictor- The target model is frozen for the entire
process. We then compute the mean squared error loss on the

outputs of the two models on states. We both train the predictor
model to minimize it and use it as our intrinsic reward. As
another implementation detail, we keep a running standard
deviation, which we use to normalize the intrinsic rewards to
a reasonable level.

” ftarget (StJrl) - fpredictor (3t+1) ”

To modify PPO to fit RND, the value network outputs two
values, one for the extrinsic value Vg and one for the intrinsic
value V7. These are combined when computing the advantages
for the policy gradient, specifically, we do not use episode
terminations while computing the V;, and we normalize the
Ap, Ap separately before adding them together to get A =
A+ Ag.

C. Neural Network Architecture

For our observations, we have image data from a simulated
camera as well as various proprioceptive observations for the
robot itself. However, we didn’t have access to some of these
on the robot in the lab, so the final robot observation is a 37-
dimensional vector containing information about the joints,
end effector, and gripper. We also get a 100 x 100 image that
we grayscale.

We also use two heads for the model: a convolutional head
that processes the images and a linear layer that processes the
robot observations. We then concatenate these observations
together.

We also utilize observation stacking for both the policy
and value networks in our RL algorithm, which gives us a
4-channel 100 x 100 image and a 148-dimensional vector,
which are passed into the model. For the feature models in
RND, we only take the latest frame and robot state, as this
was the original way it was implemented for Atari. We also
normalize/scale the observations to a reasonable range for the
models. For the policy/value networks we scale the image
observations such that the pixel values are from [0, 1], and
multiply the robot state by 10 to get them to a more reasonable
range. For the feature networks in RND, we keep track of
a running mean and standard deviation, which are used to
normalize the image observations, and we keep the robot state
observations the same.

4x Image

Observations
4 Proprio Observations
¥ ¥
ConvhMet Linear Layer
MLP

Fig. 2. Core of RL models

IV. RESULTS

A. Simulation

We ran several experiments in simulation to analyze the
effects of intrinsic rewards on the agents’ learning speed.
Unfortunately, intrinsic rewards seemed to be more of a dis-
traction than a helpful guide to our models, as they performed
worse in both the dense rewards (which provide rewards for
actions such as reaching, grasping, and picking up) and the
sparse rewards (which only provide rewards upon lifting).

—— dense_eval_rew
denseRND_eval_rew

150 1

1254

100 4

7541

50

251

Fig. 3. Training results with dense rewards

16

—— sparse_eval_rew
144 sparseRND_eval_rew

124

104

Fig. 4. Training results with sparse rewards

We kept the RND module training in the background for all
of these experiments, even if we didn’t use the intrinsic reward
to train the agents themselves. This did show an interesting
result, in that the agents that were solving the regular task
were also increasing the amount of intrinsic reward to the
agents, which was an encouraging result. As such, we also
trained models only to utilize the intrinsic reward without any
extrinsic reward, to analyze what the agents would do.

—— dense_int_rew

denseRND_int_rew
—— sparseRND_int_rew
—— sparse_int_rew

124

1.0

0.8 q

0.6

0.4 4

0 200 400 600 800 1000

Fig. 5. Intrinsic reward over time, all models tended to increase this.

The resulting policies are shown in the appendix website,
but generally, we found that the agent learned to keep the
arm inside the camera workspace and would often hit the
block itself, which led to higher extrinsic rewards without
being explicitly trained on it. We also compared how these
agents behaved compared to a completely random policy,
which we noticed tended to extend the arm completely and get
stuck, often outside of the workspace/camera. Below is also a
comparison of the pure RND agent to the sparse reward agents
(both RND and no intrinsic). While this isn’t a fair compar-
ison due to a variety of changes to hyperparameters/system
dynamics to allow us to do sim-to-real on these policies, the
fact that it was performing better than our sparse + RND did
show that there was certainly room for improvement in the
performance as well.

16
—— sparse_eval_rew
144 sparseRND_eval_rew
—— RND_eval_rew

124

104

Fig. 6. More training comparisons

B. Hardware

To bridge the sim-to-real gap, we utilized a built-in obser-
vation randomization wrapper and modified the environment
to match the level of the table with the one in the lab. We
specifically wanted to see the dense RND policy and a pure
RND policy. We use a Logitech C920 to get images at 30 fps,
crop/scale/grayscale to mimic our simulation observations, and
extract the robot state using ROS. Our simulation ran at 10
Hz and matched that frequency in ROS. Many of the shown
training curves were also used operational space control in
simulation, but we were using joint velocity control so we had
to retrain the dense RND model, and the pure RND model was
trained using the joint velocity control as well.

Fig. 7. Grayscaled images from the webcam

Unsurprisingly, given the learning curves, our dense RND
model, while it could reach for the block, tended to be a bit
unstable as the policy in simulation was likely exploiting the

intrinsic reward rather than focusing on the task itself. Inter-
estingly, our RND policy acted similarly between simulation
and reality by moving around in the camera space, and would
go near the block. We specifically chose a policy that wasn’t
tending towards the camera, as there was likely no physical
camera in the simulation, which wouldn’t match reality. We
also compared this to passing randomly sampled actions to
the robot by sampling from a uniform [—0.2, 0.2] distribution,
interestingly this tended to only move around in the same
space, which helped to demonstrate just how unique the RND
policy had learned.

V. DISCUSSION

Our results demonstrate several key insights into the role
of intrinsic motivation in RL and robotic grasping. First, we
observed that agents trained with dense rewards consistently
outperform sparse rewards for both RND and standard agents,
which agrees with our expectation and illustrates the problem
with standard RL’s reliance on dense external rewards. Second,
RND agents exhibited novelty-seeking exploratory behaviors,
such as moving towards the camera, to maximize prediction
error and hence the intrinsic reward while deviating from
the immediate objective. While this demonstrates the intrinsic
motivation in action, it also points to some limitations and
challenges to effectively leverage intrinsic reward for optimal
learning. For our relatively simple grasping tasks, RND did
not improve performance over standard agents, as intrinsic
motivation appears to distract the RND agent from the primary
objective when the solution space is small or easily discover-
able.

A main challenge of this project is the overall limited time
and resources available, as training RL agents requires lots of
time and compute resources. These limitations led us to focus
on a simplified grasping scenario rather than the more complex
and exploratory setting of cluttered environments, which we
initially intended to study. Additionally, more hyperparameter
tuning or testing other changes such as observation stacking
for the feature models could be interesting avenues to inves-
tigate, but we couldn’t get to them in time.

Future work may extend our setup to more complex environ-
ments and tasks where effective exploration is critical, such as
cluttered scenes with occluded target objects. These scenarios
would better highlight the benefits of intrinsic motivation in
guiding exploration and overcoming sparse rewards. Addi-
tionally, we aim to investigate the impact of hyperparameter
choices and observation modalities on learning performance.

REFERENCES

[1] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-Driven
Exploration by Self-Supervised Prediction,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017. [Online].
Available: https://doi.org/10.1109/cvprw.2017.70

[2] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.
[Online]. Available: https://arxiv.org/abs/1810.12894

[3] Y. Zhu et al., “robosuite: A modular simulation framework and bench-
mark for robot learning,” arXiv preprint arXiv:2009.12293, 2025. [On-
line]. Available: https://arxiv.org/abs/2009.12293

https://doi.org/10.1109/cvprw.2017.70
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2009.12293

[4]

[5]

[6]

[7]

[8]

A. Mandlekar et al., “Scaling Robot Supervision to Hundreds of
Hours with RoboTurk: Robotic Manipulation Dataset through Human
Reasoning and Dexterity,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, Nov. 2019, pp.
1048-1055. Available: https://doi.org/10.1109/iros40897.2019.8968114
A. Boularias, J. Bagnell, and A. Stentz, “Learning to Manipulate
Unknown Objects in Clutter by Reinforcement,” in Proc. AAAI Conf.
Artif. Intell., vol. 29, no. 1, Feb. 2015. [Online]. Available: https:
/Iwww.rl.cmu.edu/pub_files/2015/1/AbdeslamAAAI2015.pdf

L. Wu, Y. Chen, Z. Li, and Z. Liu, “Efficient push-grasping for multiple
target objects in clutter environments,” Front. Neurorobot., vol. 17, May
2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/
fnbot.2023.1188468/full

C. Schwarke, V. Klemm, M. van der Boon, M. Bjelonic, and M.
Hutter, “Curiosity-Driven Learning of Joint Locomotion and Manipu-
lation Tasks,” in Proc. 7th Conf. Robot Learn. (CoRL), 2023. [Online].
Available: https://openreview.net/forum?id=QG_ERxtDAP-

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling
(2012). The Arcade Learning Environment: An Evaluation Platform for
General Agents. CoRR, abs/1207.4708. [Online]. Available: https://arxiv.
org/abs/1207.4708

VI. APPENDIX

A. Training Details

These hyperparameters were essentially initialized to be as
similar to the original random network distillation paper as
possible while also accounting for the continuous dynamics.

Parameter PPO PPO+RND
Ve 0.99 0.999
Yi N/A 0.99
Intrinsic Reward Coefficient 0 1
Extrinsic Reward Coefficient 2 2
Log Std 0 0
A 0.95 0.95
€ 0.2 0.2
Entropy Coefficient 0.001 0.001
Value Coefficient 0.5 0.5
Learning Rate 0.0003 0.0003
Environments 32 32
Rollout Length 256 256
Max Grad Norm 0.5 0.5

B. Model Comparisons

150 +

1254

100 4

751

50

254

—— dense_eval_rew
denseRND_eval_rew

—— sparse_eval_rew

—— sparseRND_eval_rew

Fig. 8. Overall comparisons between the models (excluding pure RND)

Code: https://github.com/antony-zhao/106b-final-project
Demo Website

https://www.ri.cmu.edu/pub_files/2015/1/AbdeslamAAAI2015.pdf
https://www.ri.cmu.edu/pub_files/2015/1/AbdeslamAAAI2015.pdf
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1188468/full
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1188468/full
https://openreview.net/forum?id=QG_ERxtDAP-
https://arxiv.org/abs/1207.4708
https://arxiv.org/abs/1207.4708
https://github.com/antony-zhao/106b-final-project
https://sites.google.com/berkeley.edu/intrinsic-motivation-106b/

	Introduction
	Related Work
	Reinforcement Learning
	Intrinsic Motivation

	Methods
	Proximal Policy Optimization (PPO)
	Random Network Distillation
	Neural Network Architecture

	Results
	Simulation
	Hardware

	Discussion
	References
	Appendix
	Training Details
	Model Comparisons

